Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.522
Filtrar
1.
Adv Mater ; 35(10): e2209603, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36524741

RESUMO

Glutathione (GSH)-activatable probes hold great promise for in vivo cancer imaging, but are restricted by their dependence on non-selective intracellular GSH enrichment and uncontrollable background noise. Here, a holographically activatable nanoprobe caging manganese tetraoxide is shown for tumor-selective contrast enhancement in magnetic resonance imaging (MRI) through cooperative GSH/albumin-mediated cascade signal amplification in tumors and rapid elimination in normal tissues. Once targeting tumors, the endocytosed nanoprobe effectively senses the lysosomal microenvironment to undergo instantaneous decomposition into Mn2+ with threshold GSH concentration of ≈ 0.12 mm for brightening MRI signals, thus achieving high contrast tumor imaging and flexible monitoring of GSH-relevant cisplatin resistance during chemotherapy. Upon efficient up-regulation of extracellular GSH in tumor via exogenous injection, the relaxivity-silent interstitial nanoprobe remarkably evolves into Mn2+ that are further captured/retained and re-activated into ultrahigh-relaxivity-capable complex by stromal albumin in the tumor, and simultaneously allows the renal clearance of off-targeted nanoprobe in the form of Mn2+ via lymphatic vessels for suppressing background noise to distinguish tiny liver metastasis. These findings demonstrate the concept of holographic tumor activation via both tumor GSH/albumin-mediated cascade signal amplification and simultaneous background suppression for precise tumor malignancy detection, surveillance, and surgical guidance.


Assuntos
Albuminas , Glutationa , Imageamento por Ressonância Magnética , Nanopartículas Metálicas , Sondas Moleculares , Neoplasias , Glutationa/administração & dosagem , Glutationa/farmacocinética , Glutationa/farmacologia , Sondas Moleculares/administração & dosagem , Sondas Moleculares/farmacocinética , Sondas Moleculares/farmacologia , Albuminas/administração & dosagem , Albuminas/farmacocinética , Albuminas/farmacologia , Imageamento por Ressonância Magnética/métodos , Meios de Contraste/administração & dosagem , Meios de Contraste/farmacocinética , Meios de Contraste/farmacologia , Aumento da Imagem/métodos , Holografia/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/fisiologia , Nanopartículas Metálicas/administração & dosagem , Transferrina/administração & dosagem , Transferrina/farmacocinética , Transferrina/farmacologia , Distribuição Tecidual , Células A549 , Humanos , Animais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Cisplatino/administração & dosagem , Cisplatino/farmacocinética , Cisplatino/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia
2.
Eur J Cancer ; 160: 92-99, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34810046

RESUMO

BACKGROUND: Locally advanced head and neck squamous cell carcinoma (HNSCC) is commonly treated with cisplatin-based chemoradiotherapy (CRT). Cisplatin is associated with severe toxicity, which negatively affects survival. In recent years, a relationship between low skeletal muscle mass (SMM) and increased toxicity has been described. This increased toxicity may be related to altered cisplatin distribution and binding in the fat-free body mass of which SMM is the largest contributor. This study aims to investigate the association between cisplatin pharmacokinetics and SMM in patients with HNSCC. METHODS: We performed a prospective observational study in patients with HNSCC treated with CRT. Patients received standard-of-care chemotherapy with three cycles of cisplatin at a dose of 100 mg/m2 per cycle. Quantitative data on SMM, measured on computed tomography scans and cisplatin pharmacokinetics (total and ultrafilterable plasma concentrations) were collected, as well as data on toxicity. RESULTS: A total of 45 evaluable patients were included in the study. A large proportion of the study population had a low SMM (46.7%). The majority of patients (57.8%) experienced cisplatin dose-limiting toxicities. Pharmacokinetic analysis showed a significant relationship between cisplatin pharmacokinetics and SMM, weight, fat-free mass and body surface area (p < 0.005). In a simulation, patients with a low SMM (<25.8 kg) were predicted to reach higher-bound cisplatin concentrations. CONCLUSION: We found an association between cisplatin pharmacokinetics and SMM; however, this relationship was also seen between cisplatin pharmacokinetics and other body composition descriptors.


Assuntos
Antineoplásicos/farmacocinética , Cisplatino/farmacocinética , Neoplasias de Cabeça e Pescoço/complicações , Músculo Esquelético/efeitos dos fármacos , Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Feminino , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
3.
Toxicol Lett ; 355: 106-115, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838996

RESUMO

Genistein (GEN) has been demonstrated to interfere with antitumor effects of cisplatin (CIS) in vitro. To analyze whether these findings are also relevant in vivo, we examined the effects of combined GEN and CIS treatment in an ovariectomized nude mouse breast cancer xenograft model. Tumor growth and markers for antitumor activity were determined after three weeks of treatment. Furthermore, the concentrations of GEN metabolites were measured in serum, liver, and xenograft tumor tissues using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Three weeks' oral exposure to GEN at a dose of 5 mg kg-1·d-1 resulted in an average concentration of total GEN metabolite equivalent as high as 0.2729 nmol g-1 wet weight in xenograft tumor tissues. At this dosage, GEN significantly antagonized the antitumor effects of CIS. Mechanistically, GEN blocked both the inhibition of cell proliferation and induction of apoptosis triggered by CIS. Moreover, GEN concentrations in xenograft tumor tissues were found to be significantly higher than in serum and liver. In conclusion, our findings suggested that oral GEN exposure at a level comparable to dietary exposure in humans could interfere with CIS chemotherapy.


Assuntos
Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Cisplatino/farmacocinética , Cisplatino/uso terapêutico , Genisteína/farmacocinética , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Interações Medicamentosas , Feminino , Genisteína/administração & dosagem , Genisteína/metabolismo , Camundongos , Ovariectomia , Distribuição Aleatória , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Invest New Drugs ; 40(1): 91-98, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34453241

RESUMO

Background In vitro/in vivo data showed synergism of cisplatin and lurbinectedin in ovarian cancer cells and grafts. This phase I trial investigated the recommended phase II dose (RD) of cisplatin and lurbinectedin combination, with (Group A) or without aprepitant (Group B), in patients with advanced solid tumors. Patients and Methods All patients received 60 mg/m2 cisplatin 90-min intravenous (i.v.) infusion followed by lurbinectedin 60-min i.v. infusion at escalating doses on Day 1 every 3 weeks (q3wk). Patients in Group A additionally received orally 125 mg aprepitant one hour before cisplatin on Day 1 and 80 mg on Days 2 and 3. Toxicity was graded according to the NCI-CTCAE v.4. Results RD for Group A was cisplatin 60 mg/m2 plus lurbinectedin 1.1 mg/m2. RD for Group B was cisplatin 60 mg/m2 plus lurbinectedin 1.4 mg/m2. The most frequent grade ≥ 3 adverse events were hematological [neutropenia (41%), lymphopenia (35%), leukopenia (24%), thrombocytopenia (18%)] and fatigue (35%) in Group A (n = 17), and neutropenia (50%), leukopenia (42%), lymphopenia (29%), and fatigue (13%) and nausea (8%) in Group B (n = 24). Four patients (2 in each group) had a partial response. Disease stabilization for ≥ 4 months was observed in 4 and 10 patients, respectively. Conclusion The combination of lurbinectedin with cisplatin was not possible in meaningful therapeutic dosage due to toxicity. The addition of aprepitant in combination with cisplatin did not allow increasing the dose due to hematological toxicity, whereas omitting aprepitant increased the incidence of nausea and vomiting. Modest clinical activity was observed in general.Clinical trial registration www.ClinicalTrials.gov code: NCT01980667. Date of registration: 11 November 2013.


Assuntos
Antineoplásicos/uso terapêutico , Carbolinas/uso terapêutico , Cisplatino/uso terapêutico , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Neoplasias/tratamento farmacológico , Idoso , Antieméticos/administração & dosagem , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Aprepitanto/administração & dosagem , Carbolinas/administração & dosagem , Carbolinas/efeitos adversos , Carbolinas/farmacocinética , Cisplatino/administração & dosagem , Cisplatino/efeitos adversos , Cisplatino/farmacocinética , Relação Dose-Resposta a Droga , Feminino , Compostos Heterocíclicos de 4 ou mais Anéis/administração & dosagem , Compostos Heterocíclicos de 4 ou mais Anéis/efeitos adversos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacocinética , Humanos , Masculino , Dose Máxima Tolerável , Taxa de Depuração Metabólica , Pessoa de Meia-Idade
5.
Pharm Res ; 38(12): 2091-2108, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34893950

RESUMO

PURPOSE: The intention of the study was to co-delivery gemcitabine and cisplatin with totally different nature by prodrug and micelle strategy to improve its in vivo stability and antitumor effect. METHODS: A prodrug of gemcitabine (mPEG-PLG-GEM) was synthesized through the covalent conjugation between the primary amino group of gemcitabine and the carboxylic group of poly (L-glutamic acid)-g-methoxy poly (ethylene glycol) (mPEG-PLG). It was prepared into micelles by a solvent diffusion method, and then combined with cisplatin through chelation to prepare gemcitabine and cisplatin co-loaded mPEG-PLG micelles (mPEG-PLG-GEM@CDDP micelles). RESULTS: Gemcitabine and cisplatin in each micelle group were released more slowly than in solutions. In addition, pharmacokinetics behaviors of them were improved after encapsulated in prodrug micelles. T1/2z of gemcitabine and cisplatin encapsulated in micelles were prolonged to 6.357 h (mPEG-PLG-GEM), 10.490 h (mPEG-PLG@CDDP), 5.463 h and 12.540 h (mPEG-PLG-GEM@CDDP) compared with GEM@CDDP solutions (T1/2z = 1.445 h and 7.740 h). The ratio of synergy between gemcitabine and cisplatin (3:1 ~ 1:1(n/n)) was guaranteed in the systemic circulation, thus improving its antitumor effect. The results of biochemical analysis showed that GEM@CDDP-Sol was more toxic to kidneys and marrow compared with mPEG-PLG-GEM@CDDP micelles. CONCLUSIONS: By prodrug strategy, gemcitabine and cisplatin with totally different nature were prepared into micelles and obtained a better pharmacokinetic behavior. And the dual drug delivery system performed a better in vivo stability and antitumor effect compared with each single drug delivery system in the experiment. Scheme. Schematic of mPEG-PLG-GEM@CDDP micelles' formation and action process.


Assuntos
Antineoplásicos/administração & dosagem , Cisplatino/administração & dosagem , Desoxicitidina/análogos & derivados , Portadores de Fármacos/química , Ácido Glutâmico/análogos & derivados , Polietilenoglicóis/química , Animais , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Sobrevivência Celular , Cisplatino/farmacocinética , Desoxicitidina/administração & dosagem , Desoxicitidina/farmacocinética , Composição de Medicamentos , Liberação Controlada de Fármacos , Ácido Glutâmico/química , Humanos , Masculino , Camundongos , Micelas , Pró-Fármacos/administração & dosagem , Ratos , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
6.
Molecules ; 26(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34946708

RESUMO

In this study, we developed a strategy to determine atto- and femtomolar amounts of metal ions in lysates and mineralizates of cells (human non-small-cell lung carcinoma (NSCLC, A549) and normal lung (MRC-5)) exposed to cytotoxic metallo-drugs: cisplatin and auranofin at concentrations close to the half-maximal inhibitory drug concentrations (IC50). The developed strategy combines data obtained using biological and chemical approaches. Cell density was determined using two independent cell staining assays using trypan blue, calcein AM/propidium iodide. Metal concentrations in lysed and mineralized cells were established employing a mass spectrometer with inductively coupled plasma (ICP-MS) and equipped with a cross-flow nebulizer working in aspiration mode. It allowed for detecting of less than 1 fg of metal per cell. To decrease the required amount of sample material (from 1.5 mL to ~100 µL) without loss of sensitivity, the sample was introduced as a narrow band into a constant stream of liquid (flow-injection analysis). It was noticed that the selectivity of cisplatin accumulation by cells depends on the incubation time. This complex is accumulated by cells at a lower efficiency than auranofin and is found primarily in the lysate representing the cytosol. In contrast, auranofin interacts with water-insoluble compounds. Despite their different mechanism of action, both metallo-drugs increased the accumulation of transition metal ions responsible for oxidative stress.


Assuntos
Antineoplásicos , Auranofina , Carcinoma Pulmonar de Células não Pequenas , Cisplatino , Neoplasias Pulmonares , Espectrometria de Massas , Células A549 , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Auranofina/farmacocinética , Auranofina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Cisplatino/farmacocinética , Cisplatino/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo
7.
Drug Deliv ; 28(1): 2480-2494, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34766543

RESUMO

Cisplatin (DDP) is a first-line chemotherapeutic drug applied for the treatment of oral squamous cell carcinoma (OSCC). The anticancer activity of DDP is tightly linked to its intracellular uptake. It is unwise to increase the DDP intake by increasing the dose or shortening the dosing interval because of the severe systemic toxicity (nephrotoxicity, ototoxicity and neurotoxicity) in DDP application. The main uptake pathways of DDP include passive diffusion and active transporter transport. Therefore, finding additional uptake pathways that can improve the effective intracellular concentration of DDP is critical. Macropinocytosis, an endocytic mechanism for extracellular material absorption, contributes to the intracellular uptake of anticancer drugs. No research has been conducted to determine whether macropinocytosis can augment the intracellular uptake of DDP in OSCC cells or not. Based on that, we proved for the first time that silmitasertib (previously CX-4945) could trigger macropinocytosis, which may increase the intracellular uptake of DDP and enhance apoptosis via in vivo and in vitro experiments. We hope that our findings will inspire a new approach for the application of DDP in cancer treatment.


Assuntos
Antineoplásicos/farmacocinética , Naftiridinas/farmacologia , Fenazinas/farmacologia , Pinocitose/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/patologia , Caspases/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacocinética , Liberação Controlada de Fármacos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Neoplasias Bucais/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
ACS Appl Mater Interfaces ; 13(37): 44028-44040, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34499483

RESUMO

Polymeric nanocapsules hold considerable applications in cancer drug delivery, but the synthesis of well-defined nanocapsules with a tunable drug release property remains a significant challenge in fabrication. Herein, we demonstrate a supramolecular complexation strategy to assemble small molecular platinum (Pt) compounds into well-defined nanocapsules with high drug loading, acidity-sensitivity, and tunable Pt releasing profile. The design utilizes poly(ethylene glycol)-dendritic polylysine-G4/amides to complex with Pt compounds, forming stable nanocapsules with diameters approximately ∼20 nm and membrane thickness around several nanometers. The stability, drug content, and release profiles are tunable by tailoring the dendritic structure. The designated polymer-Pt nanocapsules, PEG-G4/MSA-Pt, showed sustained blood retention, preferential tumor accumulation, enhanced cellular uptake, lysosomal drug release, and nuclear delivery capability. PEG-G4/MSA-Pt showed enhanced antitumor efficacy compared to free cisplatin and other nanocapsules, which stopped the progression of both A549 cell xenografts and patient-derived xenografts (PDXs) of hepatocellular carcinoma on a mice tumor model. Thus, we believe this strategy is promising for developing Pt-based nanomedicine for cancer drug delivery.


Assuntos
Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Portadores de Fármacos/química , Nanocápsulas/química , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/química , Cisplatino/farmacocinética , Complexos de Coordenação/química , Complexos de Coordenação/farmacocinética , Dendrímeros/química , Dendrímeros/farmacocinética , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Humanos , Camundongos Endogâmicos BALB C , Platina/química , Platina/farmacocinética , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polilisina/química , Polilisina/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Drug Deliv ; 28(1): 1982-1994, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34569406

RESUMO

Hepatocellular carcinoma (HCC) is widespread cancer with a high degree of morbidity and mortality in individuals worldwide and a serious concern for its resistance to present chemotherapy drugs. In this investigation, the combination of cisplatin (CPT) and metformin (MET) to kill the HepG2 and caco-2 cells was developed into a new pH-responding magnetic nanocomposite based on reduced graphene oxide. Polyhydroxyethyl methacrylic (PHEA) was then linked employing grafting from approach to the reduced graphene oxide by ATRP polymerization (Fe3O4@rGO-G-PSEA). FT-IR, SEM, XRD, DLS, and TGA analyses evaluated physicochemical characteristics of the nanocomposite. In addition, the cellular uptake property of the nanocomposites was examined by the HepG2 cells. The outcomes of cell viability results indicate that the nanoparticles loaded with MET&CPT showed the lowest concentration rate of HepG2 and Caco-2 cells compared to the drug-loaded single nanocomposite groups and free drugs. The histological analysis has demonstrated relatively safe and does not produce different stress such as swelling and inflammation of the mice organs. Our results show the enhancement in cytotoxicity in HepG2 and Cocoa-2 cells by MET and CPT graphene oxide-based nanocomposite by promoting apoptotic response. Moreover, Fe3O4@rGO-G-PSEA showed potent in vivo antitumor efficacy but showed no adverse toxicity to normal tissues. Together, this study can provide insight into how surface embellishment may tune these nanocomposites' tumor specificity and provide the basis for developing anticancer efficacy.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/patologia , Cisplatino/farmacologia , Grafite/química , Neoplasias Hepáticas/patologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica/métodos , Cisplatino/administração & dosagem , Cisplatino/farmacocinética , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Células Hep G2 , Humanos , Nanopartículas Magnéticas de Óxido de Ferro , Masculino , Metformina/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Nanocompostos/química , Poli-Hidroxietil Metacrilato/análogos & derivados , Poli-Hidroxietil Metacrilato/química , Espécies Reativas de Oxigênio
10.
J Biol Chem ; 297(3): 101068, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34375638

RESUMO

The circadian clock controls the expression of nearly 50% of protein coding genes in mice and most likely in humans as well. Therefore, disruption of the circadian clock is presumed to have serious pathological effects including cancer. However, epidemiological studies on individuals with circadian disruption because of night shift or rotating shift work have produced contradictory data not conducive to scientific consensus as to whether circadian disruption increases the incidence of breast, ovarian, prostate, or colorectal cancers. Similarly, genetically engineered mice with clock disruption do not exhibit spontaneous or radiation-induced cancers at higher incidence than wild-type controls. Because many cellular functions including the cell cycle and cell division are, at least in part, controlled by the molecular clock components (CLOCK, BMAL1, CRYs, PERs), it has also been expected that appropriate timing of chemotherapy may increase the efficacy of chemotherapeutic drugs and ameliorate their side effect. However, empirical attempts at chronochemotherapy have not produced beneficial outcomes. Using mice without and with human tumor xenografts, sites of DNA damage and repair following treatment with the anticancer drug cisplatin have been mapped genome-wide at single nucleotide resolution and as a function of circadian time. The data indicate that mechanism-based studies such as these may provide information necessary for devising rational chronochemotherapy regimens.


Assuntos
Carcinogênese/efeitos dos fármacos , Cronofarmacocinética , Relógios Circadianos/fisiologia , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Proteínas CLOCK/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Ciclo Celular/fisiologia , Fenômenos Cronobiológicos , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Cisplatino/farmacocinética , Cisplatino/farmacologia , Criptocromos/genética , Criptocromos/metabolismo , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Humanos , Camundongos , Neoplasias/genética , Transcrição Gênica/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Nat Commun ; 12(1): 4628, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330905

RESUMO

Simultaneous visualization of the relationship between multiple biomolecules and their ligands or small molecules at the nanometer scale in cells will enable greater understanding of how biological processes operate. We present here high-definition multiplex ion beam imaging (HD-MIBI), a secondary ion mass spectrometry approach capable of high-parameter imaging in 3D of targeted biological entities and exogenously added structurally-unmodified small molecules. With this technology, the atomic constituents of the biomolecules themselves can be used in our system as the "tag" and we demonstrate measurements down to ~30 nm lateral resolution. We correlated the subcellular localization of the chemotherapy drug cisplatin simultaneously with five subnuclear structures. Cisplatin was preferentially enriched in nuclear speckles and excluded from closed-chromatin regions, indicative of a role for cisplatin in active regions of chromatin. Unexpectedly, cells surviving multi-drug treatment with cisplatin and the BET inhibitor JQ1 demonstrated near total cisplatin exclusion from the nucleus, suggesting that selective subcellular drug relocalization may modulate resistance to this important chemotherapeutic treatment. Multiplexed high-resolution imaging techniques, such as HD-MIBI, will enable studies of biomolecules and drug distributions in biologically relevant subcellular microenvironments by visualizing the processes themselves in concert, rather than inferring mechanism through surrogate analyses.


Assuntos
Azepinas/metabolismo , Cisplatino/metabolismo , Espaço Intracelular/metabolismo , Espectrometria de Massa de Íon Secundário/métodos , Triazóis/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Azepinas/farmacocinética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Cisplatino/farmacocinética , Citoplasma/metabolismo , Células HeLa , Humanos , Células Jurkat , Microscopia Confocal , Triazóis/farmacocinética
13.
Int J Nanomedicine ; 16: 3679-3694, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093012

RESUMO

INTRODUCTION: Photodynamic therapy (PDT) has been widely researched by cancer therapists in recent years. This study aims to establish a drug delivery system combining PDT and chemotherapy to show that chemotherapeutic drugs provide oxygen to PDT, while PDT promotes the release of chemotherapeutic drug. METHODS: Firstly, poly(ethylene glycol)-lysine(Ce6)-block-poly(L-glutamate)-imidazole (mPEG-lys(Ce6)-PGA-AIM) was synthesized and self-assembled into micelles that exhibited pH- and ROS-responsiveness and buffering capacity. Perfluorohexanoate-modified cisplatin (FCP), as oxygen carriers, was encapsulated into mPEG-lys(Ce6)-PGA-AIM micelles. Then, the properties of micelles and their biological functions in vivo and in vitro were investigated. RESULTS: The micelles exhibited remarkabe stability, pH regulated drug release, good biocompatibility and effective tumor penetration. Cellular uptake demonstrated the efficient endosome/lysosome escape of CFMs, which facilitates the intracellular drug release. Both in vitro and in vivo experiments reflected that CFMs with laser irradiation showed significantly improved therapeutic activity compared with single PDT or chemotherapy. CONCLUSION: Chemotherapy and PDT were combined in the form of mutual assistance to provide a promising strategy for clinical treatment.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Fotoquimioterapia/métodos , Animais , Caproatos/química , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Cisplatino/química , Cisplatino/farmacocinética , Liberação Controlada de Fármacos , Fluorocarbonos/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Terapia a Laser , Masculino , Camundongos Nus , Micelas , Oxigênio/administração & dosagem , Polímeros/química , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Espécies Reativas de Oxigênio , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Int J Mol Sci ; 22(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069278

RESUMO

Clinical outcomes of conventional drug combinations are not ideal due to high toxicity to healthy tissues. Cisplatin (CDDP) is the standard component for many cancer treatments, yet its principal dose-limiting side effect is nephrotoxicity. Thus, CDDP is commonly used in combination with other drugs, such as the autophagy inhibitor chloroquine (CQ), to enhance tumor cell killing efficacy and prevent the development of chemoresistance. In addition, nanocarrier-based drug delivery systems can overcome chemotherapy limitations, decreasing side effects and increasing tumor accumulation. The aim of this study was to evaluate the toxicity of CQ and CDDP against tumor and non-tumor cells when used in a combined treatment. For this purpose, two types of micelles based on Pluronic® F127 hybrid dendritic-linear-dendritic block copolymers (HDLDBCs) modified with polyester or poly(esteramide) dendrons derived from 2,2'-bis(hydroxymethyl)propionic acid (HDLDBC-bMPA) or 2,2'-bis(glycyloxymethyl)propionic acid (HDLDBC-bGMPA) were explored as delivery nanocarriers. Our results indicated that the combined treatment with HDLDBC-bMPA(CQ) or HDLDBC-bGMPA(CQ) and CDDP increased cytotoxicity in tumor cells compared to the single treatment with CDDP. Encapsulations demonstrated less short-term cytotoxicity individually or when used in combination compared to the free drugs. However, and more importantly, a low degree of cytotoxicity against non-tumor cells was maintained, even when drugs were given simultaneously.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Portadores de Fármacos/química , Micelas , Polímeros/química , Células A549 , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cloroquina/administração & dosagem , Cloroquina/farmacocinética , Cisplatino/administração & dosagem , Cisplatino/farmacocinética , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Fibroblastos/efeitos dos fármacos , Células HeLa , Humanos , Poloxâmero/química , Polímeros/síntese química
15.
Br J Cancer ; 125(4): 520-527, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34040174

RESUMO

BACKGROUND: Berzosertib (formerly M6620, VX-970) is a highly potent and selective, first-in-class ataxia telangiectasia-mutated and Rad3-related protein kinase (ATR) inhibitor. We assessed the safety, tolerability, pharmacokinetics, and preliminary efficacy of berzosertib plus cisplatin. METHODS: Adult patients with advanced solid tumours refractory or resistant to standard of care therapies received ascending doses of cisplatin (day 1) and berzosertib (days 2 and 9) every 3 weeks (Q3W). RESULTS: Thirty-one patients received berzosertib (90-210 mg/m2) and cisplatin (40-75 mg/m2) across seven dose levels. The most common grade ≥3 treatment-emergent adverse events were neutropenia (20.0%) and anaemia (16.7%). There were two dose-limiting toxicities: a grade 3 hypersensitivity reaction and a grade 3 increase in alanine aminotransferase. Berzosertib 140 mg/m2 (days 2 and 9) and cisplatin 75 mg/m2 (day 1) Q3W was determined as the recommended Phase 2 dose. Cisplatin had no apparent effect on berzosertib pharmacokinetics. Of the 31 patients, four achieved a partial response (two confirmed and two unconfirmed) despite having previously experienced disease progression following platinum-based chemotherapy. CONCLUSIONS: Berzosertib plus cisplatin is well tolerated and shows preliminary clinical activity in patients with advanced solid tumours, warranting further evaluation in a Phase 2 setting. CLINICAL TRIALS IDENTIFIER: NCT02157792.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Cisplatino/administração & dosagem , Isoxazóis/administração & dosagem , Neoplasias/tratamento farmacológico , Pirazinas/administração & dosagem , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Cisplatino/efeitos adversos , Cisplatino/farmacocinética , Esquema de Medicação , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Isoxazóis/efeitos adversos , Isoxazóis/farmacocinética , Masculino , Pessoa de Meia-Idade , Pirazinas/efeitos adversos , Pirazinas/farmacocinética , Resultado do Tratamento
16.
Br J Cancer ; 125(4): 510-519, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34040175

RESUMO

BACKGROUND: Berzosertib (formerly M6620, VX-970) is a highly potent and selective, first-in-class inhibitor of ataxia telangiectasia and Rad3-related protein kinase (ATR). We assessed multiple ascending doses of berzosertib + gemcitabine ± cisplatin in patients with resistant/refractory advanced solid tumours. METHODS: We evaluated the safety, tolerability, pharmacokinetics (PK) and preliminary efficacy of intravenous berzosertib + gemcitabine ± cisplatin using a standard 3 + 3 dose-escalation design. The starting doses were berzosertib 18 mg/m2, gemcitabine 875 mg/m2 and cisplatin 60 mg/m2. RESULTS: Fifty-two patients received berzosertib + gemcitabine and eight received berzosertib + gemcitabine + cisplatin. Four patients receiving berzosertib + gemcitabine had a total of seven dose-limiting toxicities (DLTs) and three receiving berzosertib + gemcitabine + cisplatin had a total of three DLTs. Berzosertib 210 mg/m2 (days 2 and 9) + gemcitabine 1000 mg/m2 (days 1 and 8) Q3W was established as the recommended Phase 2 dose (RP2D); no RP2D was determined for berzosertib + gemcitabine + cisplatin. Neither gemcitabine nor cisplatin affected berzosertib PK. Most patients in both arms achieved a best response of either partial response or stable disease. CONCLUSIONS: Berzosertib + gemcitabine was well tolerated in patients with advanced solid tumours and showed preliminary efficacy signs. CLINICAL TRIAL IDENTIFIER: NCT02157792.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Cisplatino/administração & dosagem , Desoxicitidina/análogos & derivados , Isoxazóis/administração & dosagem , Neoplasias/tratamento farmacológico , Pirazinas/administração & dosagem , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Cisplatino/efeitos adversos , Cisplatino/farmacocinética , Desoxicitidina/administração & dosagem , Desoxicitidina/efeitos adversos , Desoxicitidina/farmacocinética , Esquema de Medicação , Feminino , Humanos , Isoxazóis/efeitos adversos , Isoxazóis/farmacocinética , Masculino , Pessoa de Meia-Idade , Pirazinas/efeitos adversos , Pirazinas/farmacocinética , Análise de Sobrevida , Resultado do Tratamento , Gencitabina
17.
Int J Nanomedicine ; 16: 2357-2372, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790554

RESUMO

PURPOSE: Non-small cell lung cancer (NSCLC) is an aggressive tumor with high mortality and poor prognosis. In this study, we designed a liposome encapsulating polymeric micelles (PMs) loaded with vinorelbine (NVB) and cis-diamminedichloroplatinum (II) (cisplatin or CDDP) for the treatment of NSCLC. MATERIALS AND METHODS: Sodium poly(α-l-glutamic acid)-graft-methoxy-polyethylene glycol (PLG-G-PEG5K) was used to prepare NVB-loaded NVB-PMs and CDDP-loaded CDDP-PMs that were co-encapsulated into liposomes by a reverse evaporation method, yielding NVB and CDDP co-delivery liposomes (CoNP-lips) composed of egg phosphatidyl lipid-80/cholesterol/DPPG/DSPE-mPEG2000 at a molar ratio of 52:32:14:2. The CoNP-lips were characterized in terms of particle size, zeta potential, drug content, encapsulation efficiency, and structural properties. Drug release by the CoNP-lips as well as their stability and cytotoxicity was evaluated in vitro, and their antitumor efficacy was assessed in a mouse xenograft model of Lewis lung carcinoma cell-derived tumors. RESULTS: CoNP-lips had a spherical shape with uniform size distribution; the average particle size was 162.97±9.06 nm, and the average zeta potential was -13.02±0.22 mV. In vitro cytotoxicity analysis and the combination index demonstrated that the CoNP-lips achieved a synergistic cytotoxic effect at an NVB:CDDP weight ratio of 2:1 in an NSCLC cell line. There was sustained release of both drugs from CoNP-lips. The pharmacokinetic analysis showed that CoNP-lips had a higher plasma half-life than NP solution, with 6.52- and 8.03-fold larger areas under the receiver operating characteristic curves of NVB and CDDP. CoNP-lips showed antitumor efficacy in tumor-bearing C57BL/6 mice and drug accumulation in tumors via the enhanced permeability and retention effect. CONCLUSION: CoNP-lips are a promising formulation for targeted therapy in NSCLC.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cisplatino/uso terapêutico , Sistemas de Liberação de Medicamentos , Neoplasias Pulmonares/tratamento farmacológico , Micelas , Polímeros/química , Vinorelbina/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/administração & dosagem , Cisplatino/farmacocinética , Cisplatino/farmacologia , Liberação Controlada de Fármacos , Humanos , Lipossomos , Neoplasias Pulmonares/patologia , Masculino , Camundongos Endogâmicos C57BL , Nanopartículas/ultraestrutura , Tamanho da Partícula , Polietilenoglicóis/química , Ratos Sprague-Dawley , Distribuição Tecidual , Vinorelbina/farmacocinética , Vinorelbina/farmacologia
18.
Bioelectrochemistry ; 140: 107788, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33838515

RESUMO

The use of electrochemotherapy (ECT) is a well-established technique to increase the cellular uptake of cytotoxic agents within certain cancer treatment strategies. The study of the mechanisms that take part in this complex process is of high interest to gain a deeper knowledge of it, enabling the improvement of these strategies. In this work, we present a coupled multi-physics electroporation model based on a related previous one, to describe the effect of a set of electric pulses on cisplatin transport across the plasma membrane. The model applies a system of partial differential equations that includes Poisson's equation for the electric field, Nernst-Planck's equation for species transport, Maxwell's tensor and mechanical equilibrium equation for membrane deformation and Smoluchowski's equation for pore creation dynamics. Our numerical results were compared with previous numerical and experimental published data with good qualitative and quantitative agreement. These results indicate that pore aperture is favored at the cell poles by the electric field and mechanical stress forces, giving support to the dominant hypothesis of hydrophilic pore creation as the main mechanism of drug entry during an ECT treatment.


Assuntos
Antineoplásicos/administração & dosagem , Cisplatino/administração & dosagem , Eletroquimioterapia , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacocinética , Cisplatino/farmacocinética , Eletroquimioterapia/métodos , Análise de Elementos Finitos , Humanos , Modelos Biológicos
19.
Adv Mater ; 33(15): e2007426, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33675268

RESUMO

Subcellular organelle-targeted nanoformulations for cancer theranostics are receiving increasing attention owing to their benefits of precise drug delivery, maximized therapeutic index, and reduced off-target side effects. Herein, a multichannel calcium ion (Ca2+ ) nanomodulator (CaNMCUR+CDDP ), i.e., a cisplatin (CDDP) and curcumin (CUR) co-incorporating calcium carbonate (CaCO3 ) nanoparticle, is prepared by a facile one-pot strategy in a sealed container with in situ synthesized polydopamine (PDA) as a template to enhance Ca2+ -overload-induced mitochondrial dysfunction in cancer therapy. After systemic administration, the PEGylated CaNMCUR+CDDP (PEG CaNMCUR+CDDP ) selectively accumulates in tumor tissues, enters tumor cells, and induces multilevel destruction of mitochondria by the combined effects of burst Ca2+ release, Ca2+ efflux inhibition by CUR, and chemotherapeutic CDDP, thereby observably boosting mitochondria-targeted tumor inhibition. Fluorescence imaging of CUR combined with photoacoustic imaging of PDA facilitates the visualization of the nanomodulator. The facile and practical design of this multichannel Ca2+ nanomodulator will contribute to the development of multimodal bioimaging-guided organelle-targeted cancer therapy in the future.


Assuntos
Antineoplásicos/química , Agonistas dos Canais de Cálcio/química , Cisplatino/química , Curcumina/química , Mitocôndrias/efeitos dos fármacos , Nanocápsulas/química , Animais , Antineoplásicos/farmacocinética , Carbonato de Cálcio/química , Agonistas dos Canais de Cálcio/farmacocinética , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Cisplatino/farmacocinética , Curcumina/farmacocinética , Liberação Controlada de Fármacos , Quimioterapia Combinada , Humanos , Indóis/química , Camundongos Nus , Polímeros/química , Transdução de Sinais
20.
Cancer Sci ; 112(5): 1735-1745, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33629407

RESUMO

Lymph node (LN) metastasis is thought to account for 20-30% of deaths from head and neck cancer. The lymphatic drug delivery system (LDDS) is a new technology that enables the injection of drugs into a sentinel LN (SLN) during the early stage of tumor metastasis to treat the SLN and secondary metastatic LNs. However, the optimal physicochemical properties of the solvent used to carry the drug have not been determined. Here, we show that the osmotic pressure and viscosity of the solvent influenced the antitumor effect of cisplatin (CDDP) in a mouse model of LN metastasis. Tumor cells were inoculated into the proper axillary LN (PALN), and the LDDS was used to inject CDDP solution into the subiliac LN (SiLN) to treat the tumor cells in the downstream PALN. CDDP dissolved in saline had no therapeutic effects in the PALN after it was injected into the SiLN using the LDDS or into the tail vein (as a control). However, CDDP solution with an osmotic pressure of ~ 1,900 kPa and a viscosity of ~ 12 mPa⋅s suppressed tumor growth in the PALN after it was injected into the SiLN using the LDDS. The high osmotic pressure dilated the lymphatic vessels and sinuses to enhance drug flow in the PALN, and the high viscosity increased the retention of CDDP in the PALN. Our results demonstrate that optimizing the osmotic pressure and viscosity of the solvent can enhance the effects of CDDP, and possibly other anticancer drugs, after administration using the LDDS.


Assuntos
Cisplatino/química , Metástase Linfática/tratamento farmacológico , Pressão Osmótica , Linfonodo Sentinela , Solventes/química , Viscosidade , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacocinética , Axila , Fenômenos Químicos , Cisplatino/administração & dosagem , Cisplatino/farmacocinética , Meios de Contraste , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/métodos , Injeções Intralinfáticas/métodos , Luciferases/metabolismo , Vasos Linfáticos/fisiologia , Camundongos , Solução Salina/administração & dosagem , Solução Salina/química , Linfonodo Sentinela/diagnóstico por imagem , Solventes/administração & dosagem , Solventes/farmacocinética , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...